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Abstract
Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high
values of the dimensionless rest-frame acceleration χ and thereby invoke processes described by strong-field quantum
electrodynamics (SFQED). Measuring deviations from the results of Furry-picture perturbation theory in SFQED at high
χ can be valuable for testing existing predictions, as well as for guiding further theoretical developments. Nevertheless,
such experimental measurements are challenging due to the probabilistic nature of the interaction processes, dominating
signals of low-χ interactions and limited capabilities to control and measure the alignment and synchronization in
such collision experiments. Here we elaborate a methodology of using approximate Bayesian computations for drawing
statistical inferences based on the results of many repeated experiments despite partially unknown collision parameters
that vary between experiments. As a proof-of-principle, we consider the problem of inferring the effective mass change
due to coupling with the strong-field environment.
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1. Introduction

Although fundamental principles of quantum electrody-
namics (QED) are known for their precise experimental
validations, the implications they purport for sufficiently
strong electromagnetic fields remain theoretically intricate
and lack experimental data. Colliding accelerated electrons
with high-intensity laser pulses can be seen as a newly
emerging pathway to such experimental data[1–4]. The local
interaction is characterized by the dimensionless ratio of the
electron acceleration in its rest frame to the acceleration that
would be caused by the Schwinger field Ecrit:

χ = γe

Ecrit

√(�E + (�v/c)× �B
)2 −

(�E · �v/c
)2

, (1)

where �v,γe are the velocity and Lorentz factor of the elec-
tron, respectively, whereas �E, �B are the electromagnetic field
vectors. Here, Ecrit = m2

ec3/qe� ≈ 1018 V/m, where � is the
reduced Planck constant, c is the speed of light and me and
qe are the mass and charge of the electron, respectively.
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At χ � 1 the electrons are subject to classical emission
and the corresponding radiation reaction[5]. Emission of
photons and corresponding recoils at χ ∼ 1 are described by
nonlinear Compton scattering and have been experimentally
observed in several experiments[6–9]. Measuring quantitative
properties of the photon emission (e.g., energy, angular or
polarization distribution) at χ ∼ 1 can be perceived as a
logical next step, while results for χ � 1 can potentially
facilitate theoretical developments or even lead to fundamen-
tal discoveries (see Ref. [10] and references therein).

A severe obstacle for the outlined efforts is the interaction
complexity. The value of χ for each electron in the beam
varies in time and overall depends on the electron position
relative to the laser pulse location, which can also vary
from experiment to experiment due to spatio-temporal mis-
matches. In addition, for contemporary laser pulse durations,
many electrons can lose a significant part of their initial
energy prior to reaching the strong-field region, where they
have a chance to emit at high χ . Furthermore, due to the
Breit–Wheeler process the emitted photons can decay into
electron–positron pairs, which can lead to the onset of an
electromagnetic cascade. In combination, this can make the
measurable post-collision distributions of photons, electrons
and positrons be predominantly determined by low-χ emis-
sions, giving no direct information about emissions at high-
χ , even if they had been invoked.
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One known way of dealing with such difficulties is
Bayesian binary hypothesis testing, which is based on
comparing experimental results with the outcomes computed
on the basis of each of two competing theories. However,
even in the absence of a distinct hypothesis to be tested, one
can use a similar technique to determine parameters that
quantify deviations from the approximate theory (sometimes
referred to as the parameter calibration procedure[11–13]),
which in our case can be the theory on nonlinear Compton
scattering that is valid for moderate χ values. One
practicality of this approach is the possibility to gain
statistically rigorous knowledge from many experiments
even in case of low repeatability. For example, the inference
about high-χ events is feasible even if the collision between
the laser pulse and the electron bunch happens with a spatial
offset that varies from collision to collision without being
measured.

In this paper we consider the possibility of using the
technique of approximate Bayesian computation (ABC) in
the forthcoming experiments[11,14,15]. Since the application
of ABC is known to require problem-specific developments
and analysis, we consider some essential elements using
a proof-of-principle problem incorporating this method for
measuring the constant that quantifies the effective mass
shift[10,16–18]. We assess the use of the ABC technique in
the context of possible experimental conditions and analyze
the main requirements, difficulties and opportunities for
improvements. The paper is arranged as follows. In Section 2
we demonstrate a proof-of-principle approach to infer the
effective mass change, assessing the difficulties and limita-
tions. In Section 3 we motivate the use of likelihood-free
inference and state the ABC algorithm. Section 4 provides
the numerical aspects in simulating the experiment and
gives the prospects of the outlined methodology. We make
conclusions in Section 5.

2. Problem statement

Our goal is to analyze the ABC method for quantitative
studies of the processes described by strong-field quantum
electrodynamics (SFQED). For this purpose, we choose to
consider the problem of detecting and measuring the extent
of the effective mass shift for the electron due to its coupling
with the strong-field environment[10,16–18]. In this section, we
first give a rather general description of a potential exper-
iment and then motivate a simplified problem formulation
that is sought to serve as a proof-of-principle case. In the
following sections we elaborate the application of ABCs and
describe how the developed routine can be generalized to
deal with realistic experimental conditions.

The presence of a strong background electromagnetic field
is conjectured to drive the expansion parameter of QED to
αfχ

2/3, where αf ≈ 1/137 is the fine-structure constant[17,19].
When αfχ

2/3 � 1, the theory is rendered nonperturbative.

In this domain, electrons and positrons can be thought to
acquire an effective mass as a result of radiative corrections.
Specifically, one can show that the effective mass of the
electron m̃e can be estimated to be as follows[16]:

m̃2
e = m2

e + δm2
e = m2

e

(
1+0.84αfχ

2/3), (2)

which implies an effective value of χ (the mass enters
Equation (1) through Ecrit):

χ̃2/3 = χ2/3

1+0.84αfχ2/3 . (3)

To benchmark this effect and determine its extent, one can
consider the value of θ true = 0.84 as a model parameter θ to
be inferred from the data of repeated experiments:

χ̃2/3 = χ2/3

1+ θαfχ2/3 . (4)

In general, a chosen parameterization is not necessarily
unique and several possibilities can exist. Here, another
option is to replace χ2/3 → χθ to test the conjectured power-
law behavior that causes QED to become nonperturbative.

In replacing the quantities me → m̃e,χ → χ̃ , the rates of
photon emission and pair formation computed from QED
being valid at moderate χ become modified. As for the
former, the rate can be written as follows[20,21]:

∂I
∂ω

=
√

3m̃eq2
ecχ̃ (1− δ)

2πγ e�

(
F1 (ζ )+ 3

2
δχ̃ζF2 (ζ )

)
, (5)

where ζ = 2
3χ̃

δ
1−δ

, δ = �ω

m̃ec2γe
represents the photon energy

with frequency ω normalized to the emitting electron energy
and F1(x),F2(x) denote the first and second Synchrotron
functions defined by the following:

F1(y) = y
∫ ∞

y
K5/3(y)dy, F2(y) = yK2/3(y), (6)

in which Kν(y) are the modified Bessel functions of the
second kind.

Equation (4) indicates that the dependency of the emission
rate (Equation (5)) on θ becomes weaker with the decrease of
χ and we would ideally need to reach values of the order of
χ ∼ α

−3/2
f ≈ 1600 to have a prominent dependency. Since

such values are currently unattainable, it is clear that achiev-
ing as large values of χ as possible can be crucial. The
collision of tightly focused laser pulses with accelerated
electron bunching provides a promising layout for these
experimental efforts. The use of optimal focusing, pro-
vided by the so-called bi-dipole wave, can yield values of
χ as large as 5.25(ε/(1 GeV))(P/(1 PW))1/2 ((1 µm)/λ),
where ε is the energy of electrons, whereas P and λ are the
laser power and wavelength, respectively[22]. Nevertheless,
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bi-dipole focusing as well as any tight focusing implies a
spatial localization of the strong-field region to a size of
approximately λ that can be comparable or smaller than
the typical shot-to-shot variation of the relative electron
beam location provided by current alignment capabilities.
This leads to a reasonable question: to what extent can
information about θ be retrieved despite a large variation of
experimental outcomes due to the varied and unmeasured
offset between the laser pulse and electron bunch inherent in
current experiments? This difficulty is further complicated
by the probabilistic nature of emissions and the dominance
of the signal produced by emissions at low values of χ . We
try to assess the prospects of overcoming these difficulties
by the use of ABCs and to do so we consider the problem of
retrieving information about θ from a sequence of measured
experimental outcomes assuming that there is an unknown
offset for each measurement.

To focus on the outlined difficulty, we make a number of
simplifications, while a more realistic problem formulation
is to be considered in future works. Firstly, we neglect the
generation of pairs, which in practice can be suppressed by
the use of short laser pulses[23] and/or the high energy of
electrons. We also consider a circularly polarized laser pulse
and the use of the angular-energy distribution of produced
photons, because in this case high-energy photons emitted
toward the directions that deviate the most from the collision
direction are predominantly produced at large values of χ[22].
Although the deviation angle is used for our diagnostics,
we still assume that the high energy of electrons makes this
angle sufficiently small so that the instantaneous transverse
deviations of electrons are much less than λ and thus do not
affect the observed field amplitude. Moreover, we assume
that the laser pulse is sufficiently short not to cause multiple
emissions, which means that we assume all electrons to
have their initial energy throughout the interaction. Finally,
we need to account for the presence of an unknown spatio-
temporal offset between the electron beam and focused laser
field for each collision. Since such a mismatch leads to a
reduced field amplitude observed by the electrons, we choose
to model these variations by assuming that the electron
beam propagates through a 1D laser pulse with an unknown
amplitude that varies from collision to collision. In what
follows, we detail this model of hypothetical experiments.

In defining the model of the experiment, we simulate a
single electron of momentum pz = −mecγ to interact with
a plane wave laser pulse having circular polarization. The
corresponding vector potential and electric field amplitudes
are given by the following:

Ax (ξ) = (1−d)A0 · 1
4

(−cos (ξ (k +2π/L))

2π + kL

−2cos (kξ)

kL
+ cos (ξ (k −2π/L))

2π − kL

)
�

(
ξ

L

)
, (7)

Ex (ξ) = −∂Ax (ξ)

∂t
, (8)

where ξ = z − ct is the moving coordinate, A0 is the peak
vector potential amplitude, k and L are the wavenumber and
pulse length of the laser, respectively, and �(x) is defined
as a function equating to unity when | x |< 1/2 and zero
otherwise. The electromagnetic field amplitude is measured
in dimensionless units a0 = qeA0

meckL and 0 ≤ d ≤ 1 expresses
the uncontrollable misalignment mentioned previously and
is referred to as a latent parameter.

The inclusion of the latent parameter d becomes the pri-
mary reason to require the angular-energy spectra of photons
as opposed to the energy distribution alone. Indeed, from
Equations (1) and (4) one can see that the same value of
χ (which completely determines radiation) can be achieved
by various combinations of d and θ . For instance, the case
of (θ = θ true; d = 0) yields the same value for χ as the
combination of θ = 0 and the following:

d = 1− (1+ θ trueαfχ
2/3)−3/2

. (9)

Because of this degeneracy, inferring the value of θ from the
energy spectrum alone is impossible.

Let us now analyze the implications of including the
angular part of the spectrum. Firstly, consider the transverse
motion of an electron in a plane electromagnetic wave[24]:

�p⊥ = −qe �A⊥, (10)

where �p⊥ and �A⊥ denote the transverse components of the
electron momentum and vector potential, respectively. Con-
sequentially, at each instance of time, the electron propagates
toward the direction that deviates from the initial direction by
an angle α:

α = arctan
( | �p⊥ |

| �pz |
)

, (11)

where we assume that the motion remains highly relativistic.
Evidently, emitted photons retain this angle and, given the
circular polarization of the wave, this becomes correlated
to the value of χ[22]. We assume that in the case of highly
relativistic motion with α � 1, the change of effective mass
(θ �= 0) does not lead to the change of �pz before the emission,
while �p⊥ is totally defined by the vector potential according
to Equation (10). Following Equation (11), this means that
the value of θ does not affect α. On the contrary, the increase
of d implies a diminished electromagnetic field amplitude
perceived by the electrons, which leads to smaller angles α.
Note that our idea here is to break the described degeneracy,
which does not necessarily require α being independent of θ

(other cases can be analyzed in a similar way).
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Having discussed the necessity for learning from both the
energy and angle of emitted photons we define the measured
data of our model experiment as a fractional energy distribu-
tion ∂2E/∂δ∂α, which is a function of normalized photon
energy δ and deviation angle α. For the computational
implementation this function is represented by a matrix xobs,
of which the elements x(k)(l)

obs can be computed from the result
of a simulation by counting the total energy of photons
belonging to each cell: k�δ < δ ≤ (k +1)�δ; l�α < α ≤
(l+1)�α, where the choice of cell sizes �δ and �α is
a matter of a trade-off between the level of noise and
resolution. The problem formulation is then to infer the value
of θ from a sequence of measured xobs despite unknown d in
each case.

3. Methodology

We now establish the methodology of ABC sampling using
a general problem formulation in which Bayesian statistics
is employed for making inferences based on the results
from repeated experiments. Starting from Bayes’ theorem,
the problem of intractable likelihoods is discussed and the
appeal for ‘likelihood-free’ methods is introduced by con-
sidering standard rejection sampling. By reformulating the
rejection step by imposing an exact agreement between sim-
ulated data and that of experiments, one obtains a likelihood-
free technique. We shall see that this suffers from the curse of
dimensionality and through dimensionality reduction tech-
niques we will arrive at ABC sampling. Lastly, we consider
two additional improvements for ABC sampling with the aim
to accelerate convergence.

Let us start from considering the task of characterizing a
probabilistic process (for instance, nonlinear Compton scat-
tering with an effective electron mass shift) by carrying out
experiments. Each experiment yields measurement data xobs.
We have a model M (θ,d) that gives predictions x = M (θ,d)

for this data for any given value of a model parameter θ and
a latent parameter d. Here, θ is a fundamental parameter
that quantifies the process itself and thus its unique value
is of interest, whereas d denotes an unmeasured parameter
that can vary from experiment to experiment and determines
the outcome x in accordance with model M. We assume
that there exists a value of θ for which the model describes
(to some extent) observations given an appropriate value of
d for each experiment. Our task is to infer the probability
distribution for the value of θ from a series of repeated
experimental measurements. Put differently, the objective is
to infer the most probable range for θ given the observed data
xobs. Bayesian statistics provides a framework for the outlined
problem. The probability distribution to be determined is
referred to as a posterior distribution p(θ |xobs), which explic-
itly indicates the data xobs used for making the inference. Let
us start from the case of no latent parameter. The posterior
can then be calculated using Bayes’ theorem:

p(θ |xobs) = p(xobs|θ) ·p(θ)

p(xobs)
, (12)

where p(θ) quantifies the prior knowledge about possible
values of θ , the likelihood p(xobs|θ) conveys how likely a
measurement yielding xobs is for a given θ and p(xobs) =∫

p(xobs|θ)p(θ)∂θ appears as a normalizing factor. To incor-
porate the dependence on the latent parameter we integrate
over all its possible values, denoting p(xobs|θ,d) as the
corresponding joint likelihood:

p(θ |xobs) =
∫

p(xobs|θ,d)p(d)∂d ·p(θ)∫∫
p(xobs|θ,d)p(d)p(θ)∂d∂∂θ

, (13)

where p(d) specifies prior knowledge related to values of the
latent parameter d. Now we can sequentially account for all
observations, each time using the obtained posterior as the
prior for processing the next observation. Note that we do
not update the prior for d because its value is assumed to be
different in all the experiments.

A closed form of the posterior rarely exists and numer-
ical approaches are often used. A common strategy is to
approximate the posterior by collecting a finite number of
samples from it. Methods such as importance sampling,
Markov chain Monte Carlo (MCMC) and sequential Monte
Carlo (SMC)[25–27] are prevalent choices. However, all of the
above will require direct evaluation of the likelihood, which
can be computationally prohibitive for highly dimensional
datasets[28]. If the model M is implicitly defined through
a computer simulation, its concomitant likelihood can be
intractable[14]. A remedy is offered by the rapidly developing
field of simulation-based inference[29] in which the direct
calculation of the likelihood is averted. To motivate its use
we adopt and develop the discussion made in Ref. [28].

Consider the standard rejection sampling algorithm with
the goal of sampling a target density T (θ) provided some
auxiliary sampling density A(θ) with the requirement
A(θ) > 0 if T (θ) > 0. Then, the algorithm reads as follows.

Algorithm 1. Standard rejection sampling algorithm.

1: Sample a proposal θ∗ ∼ A(θ) .

2: Admit the proposal with a probability of T(θ∗)
CA(θ∗)

, where

C ≥ argmax
(

T(θ)

A(θ)

)
.

3: If θ∗ was not admitted, discard the proposal and repeat
steps (1) and (2) as many times as necessary.

After N trials, a collection of samples from T (θ) is
obtained. The connection to Bayesian statistics is made
by selecting T (θ) = p(θ |xobs) and A(θ) = p(θ). Then,
Equation (12) states that the acceptance rate appearing
in Algorithm 1 becomes proportional to the likelihood
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p(θ∗|xobs)
p(θ∗)

∝ p(xobs|θ∗), which is incalculable by our premise.
Still, it is possible to determine whether or not to accept
proposals without explicit computation of the likelihood.
To demonstrate this, we first note that the model M (θ,d)

is capable of generating samples of observations x ∼
p(xobs|θ,d) provided values of θ and d. Then, the key
aspect is to recognize that the probability to produce x = xobs

coincides with p(xobs|θ,d). Put differently, calculating the
acceptance rate from the likelihood can be replaced by
enforcing an exact match between the datasets, meaning
that a likelihood-free approach has been found. Therefore,
the rejection step of Algorithm 1 is reformulated to read as
follows.

Algorithm 2. Likelihood-free rejection sampling.

1: Sample proposals θ∗ ∼ p(θ), d∗ ∼ p(d).

2: Generate data x∗ = M (θ∗,d∗) from the model.

3: If x∗ = xobs, the proposal is admitted; if not, it is
discarded.

4: Repeat steps (1)–(3) as many times as necessary.

While avoiding direct computation of the likelihood,
demanding x∗ = xobs introduces a notable impediment. To
illustrate it, consider the binning of data from an experiment
into dim(xobs) = B bins such that the following are obtained:

xobs = [c1,c2,c3, . . . ,cB], (14)

x = [
c′

1,c
′
2,c

′
3, . . . ,c

′
B

]
, (15)

where cb,c′
b ∈ Z denote integer counts belonging to the bth

bin. Then, denote pb as the probability to coincide cb = c′
b at

bin b, assuming that this is independent between bins. Then,
the probability to accept a proposal θ∗ becomes as follows:

p(x = xobs) =
b=B∏
b=1

pb, (16)

which approaches zero in the limit of highly dimensional
datasets, B → ∞. The acceptance rate becomes even lower
or infeasible for continuous data in which cb,c′

b ∈ R are
real numbers. Hence, the appeal for a precise match has
to be relieved in making the sampling efficiency practical.
Realizing that this rate becomes significantly higher by
admitting samples if x ≈ xobs prompts us to define a rule
when data are sufficiently close:

‖x− xobs‖ ≤ ε, (17)

where ‖·‖ is a suitable distance metric and ε is a threshold.
Accepted samples in accordance with Equation (17) are

inevitably drawn from an approximate posterior p(θ |xobs)

and its accuracy is solely dictated by ε, which also affect
the sampling efficiency. Rejection based on Equation (17)
provides a notable improvement, but high dimensionality
remains an issue. Consider the aforementioned example with
an Euclidean distance metric so that Equation (17) reads as
follows:

(
b=B∑
b=1

(
cb − c′

b

)2

)1/2

≤ ε, (18)

and examine the favorable case in which cb − c′
b ∼ �c �

1 varies negligibly between bins. We can then naively state
Equation (18) as follows:

dim(xobs) ≤ (ε/�c)
2. (19)

Evidently, Equation (19) states that the dimension of xobs

is bounded from above by the threshold ε and the error
�c. However, for the quality of inference ε → 0 is desired,
which puts a stringent limit on the dimensionality of xobs.
The solution, being the central component of ABCs, is to
introduce so-called summary statistics:

S : RB �→ R
β, (20)

being a function that transforms data of a potentially noisy
nature into a vector of indicative characteristics sought to
unambiguously characterize the data with respect to all
possible θ . Clearly, the dimensionality β of the space of
such vectors can be much less than the number of cells B.
Moreover, the function of summary statistics can even be
defined in an agnostic way with respect to the binning choice.
As an example, one could construct a vector containing the
sample mean μ and variance σ 2 of xobs: S (xobs) = (

μ,σ 2
)
.

By converting xobs → S (xobs), the third step of Algorithm
2 can be reformulated to accept samples if the following
applies:

‖S(x)−S (xobs)‖ ≤ ε. (21)

Note that the mapping xobs → S (xobs) into a vector of sum-
mary statistics is always possible in terms of reducing the
data dimension. The question is how well the chosen vector
of summary statistics retains the information contained in
xobs, which is discussed later in Section 4.

We now have a methodologically accurate and in some
cases practically feasible routine for sampling the posterior.
However, we shall examine two more improvements for
accelerating the sampling convergence. Firstly, note that
Equation (21) implies an acceptance probability of either
zero or one without accounting for how close the match is.
To enhance the contribution of the cases yielding a more
accurate agreement relative to the ones giving a marginal
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agreement, one can use a so-called kernel function:

Kε : Rβ �→ R = Kε

(‖S(x)−S (xobs)‖
ε

)
, (22)

which defines a probability transition from one in case of a
perfect match (Kε(0) = 1) to zero in cases of deviation by the
summary-statistics distance of order ε and greater.

The second improvement concerns the fact that Algorithm
1 either accepts or rejects cases, which means that many
accepted cases are needed to mitigate the noise related
to this additional probabilistic element in the algorithm.
Effectively, this means that we marginally benefit from cases
of low acceptance probability. To avoid this, one can instead
interpret the acceptance probability as the weight of samples,
thereby accounting for all the proposals that yield non-zero
acceptance probability.

We can now return back to the inclusion of the latent
variable d. In this case, we can generate several proposals
d∗ ∼ p(d) based on our prior knowledge of it and again
accept the cases of good enough matches based on the out-
lined procedure. Effectively, we try to guess d using as many
attempts as needed. Finally, we note that we can sequen-
tially update our posterior using each xobs in a sequence
of measurements. To do so, we can compute the posterior
for each new measurement using the previous posterior as
the prior. The algorithm for processing the ith observation
(i = 1 denotes the first measurement in the sequence) of xi

obs
for computing the posterior p

(
θ | xi

obs,x
i−1
obs , . . . ,x

1
obs

)
from the

previous p
(
θ |xi−1

obs , . . . ,x
1
obs

)
then takes the following form.

Algorithm 3. ABC sampling with a latent variable.

1: Sample proposals θ∗ ∼ p
(
θ |xi−1

obs , . . . ,x
1
obs

)
, d∗ ∼ p(d).

2: Perform a simulation, retrieve x∗ = M
(
θ∗, d∗

)
and

compute the weight:

w∗ = Kε

(‖ S
(
xi

obs

)−S (x∗) ‖ /ε
)

p
(
θ∗|xi−1

obs , . . . ,x
1
obs

)
p(z∗)

. (23)

3: If w∗ > 0, accept the proposal with the computed
weight.

4: Repeat steps (1)–(3) as many times as needed to approx-
imate the posterior p

(
θ |xi

obs, . . . ,x
1
obs

)
.

In practice, one central difficulty of the ABC routine is
choosing valid summary statistics, that is, summary statistics
that differentiate all the cases in terms of θ and d. This
means that summary statistics do not yield close states for
any two different pairs of θ and d. Clearly, if this is not the
case the procedure admits the acceptance of cases of wrong
θ∗ when d∗ provides a compensation to make S (x∗ (θ∗,d∗))

Figure 1. Representation of the numerical implementation of the experi-
ment in which E0 denotes the peak electric field amplitude (the deviation
angle is exaggerated).

close to S
(
xobs

(
θ true,dtrue

))
. This can totally preclude the

convergence of the ABC sampling procedure. Finding robust
summary statistics is known to be a problem-dependent task
that requires analysis of possible cases. In the next section we
determine valid summary statistics for the proof-of-principle
problem as well as outlining the simulation routines.

4. Analysis

With respect to the simulation, the plane wave pulse is
designated by a wavelength of λ = 0.8 µm, pulse length
L = 6λ and peak amplitude a0 = 100 (excluding the factor of
1 − d). Electrons are assigned an initial energy of 170 GeV
(γe ∼ 105) situated a distance zs = 5λ from the origin (the
numerical layout can be seen in Figure 1). Both the electron
and pulse are allowed to counter propagate for Nt = 100
time steps �t = (L+zs/2)c−1

Nt
. Here, x (δ,δ +�δ,α,α +�α) is

discretized into a 100×100 grid of cells x (m�δ,n�α) each
with size �δ × �α and m,n = 0,1,2, . . . ,99. At each time
step q, Equations (10) and (11) are used to estimate the index
n ≈ α/�α. Then, for each m we accumulate the following:

xq�t = x(q−1)�t +�α�ω�t
∂I
∂ω

(m�δ,θ), (24)

where we have suppressed the arguments of x for readability
and the subscripts denote the time step. In this analysis,
we perform blind tests of the simulated cases against an
‘experiment’ xobs = M

(
θ true,d

)
that serves as a ground truth.

Here, the θ value is fixed to θ true = 0.84 but the latent
variable d varies randomly between experiments.

It was concluded in Section 2 that the fractional energy
distribution xobs needs to be measured in order to infer the
effect of the effective mass shift. For this to serve as input
to ABC sampling, corresponding summary statistics must
be chosen to map xobs onto a smaller subspace while still
retaining the information necessary to separate the effects of
θ and d. There might exist many configurations that achieve
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Figure 2. Contours of Mij as a function of θ and d where (a) compares M00
and M12 and (b) compares M01 and M11.

this given the broad definition of Equation (20). However,
it is also beneficial to select a mapping that is tolerant
(insensitive) to the probabilistic random variations of the
experimental outcome. To identify some robust and simple
enough options we consider moments of the 2D data xobs to
orders i and j:

Mij =
∑

k

∑
l

x(k)(l)
obs (k�δ)i(lδα)j�δ�α. (25)

Now, let us try to select a set of moments such that any
combination (θ,d) maps to a unique value of this set. To
select a valid option we analyze the dependency of several of
the lowest distribution moments on θ and d. Figure 2 illus-
trates contours of four distinct moments Mij in the parameter
space of θ and d. The set of moments in Figure 2(a) is a
practical choice as the contours are not parallel anywhere,
suggesting a unique pair for every θ and d. In contrast,
Figure 2(b) depicts a scenario when the contours become
parallel at several points in the parameter space, meaning
that the values of the plotted moments do not unambiguously
indicate a single pair of θ and d. For instance, the contour
lines that intersect the x-axis at θ ≈ 1.25 imply that the
values for (M01,M11) are almost identical along this line,
which holds for many pairs (θ,d). We conclude that selecting
S (xobs) = (M00,M12) is a valid choice to proceed with ABC
sampling.

Note that for a larger number of model parameters (rep-
resenting both theory inquiries and latent parameters of
collisions) one would need to inspect the dependency of
summary statistics in a multidimensional space, which can
be unfeasible. In this case one might need physics insights
to make an educated strategy to disentangle specific types
of degeneracy. In the considered case we can interpret the
identified choice through the following logic. The value of
M00 indicates the overall rate of emission that does not
differentiate the effect of θ and d. Nevertheless, the value of
M12 reflects the change of the spectrum shape (mean energy)
with angle α. This is exactly what is needed because, due
to circular polarization, the emissions with large α happen

exclusively at large values of χ (for details, see Ref. [22])
and have a shape altered due to the modification of χ (see
Equation (4)) to the extent defined by θ .

Let us now continue the analysis for the chosen summary
statistics. We make the following choice of priors over θ

and d:

p(θ) = U (0,150), p(d) = U (0,0.5), (26)

where U (a,b) denotes the uniform distribution with lower
and upper bounds a and b, respectively. Although there is
no prior knowledge apart from θ ≥ 0 and 0 ≤ d ≤ 1, we
argue that the given simulation parameters yield χ0 ≈ 100
and a value of θ = 150 would reduce the value of χ̃0 below
one, approaching a classical description. For each round of
sampling, the prior is replaced by the obtained posterior
as described in Algorithm 3. For instance, the new prior
obtained from the first observation (and those following it)
is modeled as a normal distribution π (θ) → p

(
θ |x1

obs

) ≈
N (μθ,σθ ), where μθ and σθ are the weighted mean and
standard deviation of the accepted samples, respectively.
As for the prior over d, one could construct a prior from
empirical values obtained in a real experiment. Lacking
this option, we assume that the amplitude can vary at most
by 50%. Allowing d to vary as widely as 100% will not
affect the final result. Instead, the sampling efficiency will
be reduced as larger values of d are allowed, potentially
affecting the dataset to the extent that proposals are rejected
more often.

During sampling, the following distance is calculated to
discriminate between observations:

‖S(x)−S (xobs)‖ =
√

d2
00 +d2

12, (27)

where dij =| 1 − Msim
ij

Mij
| (not to be confused with the latent

parameter) in which the superscript labels moments evalu-
ated from simulated data. A uniform kernel Kε (·) = �(·) is
chosen as well as a threshold that is progressively decreased
from ε = 1.1 to ε = 0.065 over the course of the processed
observations xobs included in the analysis. Here, the choice
of ε is manually selected to yield a narrower posterior for
each processed observation xobs while maintaining a feasible
sampling duration. For every 50th proposal θ∗ we generate
new observed data xobs as to not bias the result toward the
existing value of d∗ ∼ p(d).

In Figure 3 we present the result of sampling the posterior
based on the described ABC routine after processing i =
1,5,8 observations xobs. Each observation corresponds to
the simulated outcome of a single collision experiment with
unknown value of d and fixed θ = θ true. The fact that the
accepted samples are distributed around the actually selected
value of θ true = 0.84 indicates the claimed capability of the
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Figure 3. The approximate posterior after processing i = 1,5,8 observa-
tions in line with Algorithm 3, where in the bottom panel the dashed line
demarcates the sample mean. All distributions have Nθ = 1000 accepted
proposals.

method. Attaining a narrower posterior can be achieved by
reducing the threshold ε.

Having discussed the use of ABCs via the selected proof-
of-principle case, we can outline further developments that
could help to deal with real experiments. The first direction
of developments concerns the elaboration of an appropriate
model of experiments, which implies a relevant 3D geometry
of interaction with an account of unmeasured variations via
an extended list of latent parameters, such as all spatio-
temporal offsets, as well as parameters quantifying both
the electron bunch and the focused laser pulse. The second
direction of developments concerns computational methods
to deal with the chosen geometry of the experiment, as
well as accounting for all physical processes of relevance,
such as the generation of electron–positron pairs and the
interaction between particles and photons. Efficient use of
supercomputer resources can be crucial to compensate for
the increase of computational demands in relation to both
the complexity of simulations and the necessity to obtain
a meaningfully narrow posterior using a large number of
collisions. The third direction of developments concerns
improvements related to the use of the ABC itself. This may
include a better choice of summary statistics, a modification
of diagnostics or the experiment layout, as well as reducing
the rejection rate by employing machine learning methods
for an informed generation of proposals. Finally, the fourth
direction of developments concerns the very formulation of
theoretical questions, which takes the form of determining
models and parameters to be inferred from experiments.

5. Conclusions

We have considered prospects for an experiment capable
of inferring a parameter θ that signifies deviations from
nonlinear Compton scattering via the notion of effective
mass in the regime χ � 1. The results propel the strategies
necessary to incorporate ABC sampling in analogous exper-
iments, scalable to the inclusion of several model parameters
(θ ), as well as latent parameters that are sought to account
for unmeasured shot-to-shot variations in the conditions of
collisions. An improved implementation of the interaction
will be needed for designing future experiments. This can
be done by, for example, simulating a realistically focused
laser pulse, devising a more comprehensive description via
latent parameters and accounting for electromagnetic cas-
cades. Carrying it out might pose an increased computational
load that can be mitigated by further developments. The
convergence can be accelerated by further investigating addi-
tional summary statistics, nonuniform kernels and the use
of machine learning to suggest better proposals. In addition,
the use of high-performance computing to recruit many ABC
samplers in parallel can alleviate both impairments.
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